Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
1.
Int J Parasitol ; 53(2): 103-117, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36621599

RESUMO

Spliced leader (SL) trans-splicing is a key process during mRNA maturation of many eukaryotes, in which a short sequence (SL) is transferred from a precursor SL-RNA into the 5' region of an immature mRNA. This mechanism is present in flatworms, in which it is known to participate in the resolution of polycistronic transcripts. However, most trans-spliced transcripts are not part of operons, and it is not clear if this process may participate in additional regulatory mechanisms in this group. In this work, we present a comprehensive analysis of SL trans-splicing in the model cestode Hymenolepis microstoma. We identified four different SL-RNAs which are indiscriminately trans-spliced to 622 gene models. SL trans-splicing is enriched in constitutively expressed genes and does not appear to be regulated throughout the life cycle. Operons represented at least 20% of all detected trans-spliced gene models, showed conservation to those of the cestode Echinococcus multilocularis, and included complex loci such as an alternative operon (processed as either a single gene through cis-splicing or as two genes of a polycistron). Most insertion sites were identified in the 5' untranslated region (UTR) of monocistronic genes. These genes frequently contained introns in the 5' UTR, in which trans-splicing used the same acceptor sites as cis-splicing. These results suggest that, unlike other eukaryotes, trans-splicing is associated with internal intronic promoters in the 5' UTR, resulting in transcripts with strong splicing acceptor sites without competing cis-donor sites, pointing towards a simple mechanism driving the evolution of novel SL insertion sites.


Assuntos
Cestoides , Hymenolepis , Animais , Trans-Splicing , Hymenolepis/genética , Regiões 5' não Traduzidas , Splicing de RNA , RNA Mensageiro/metabolismo , Cestoides/genética , RNA Líder para Processamento/genética , Estágios do Ciclo de Vida
2.
Brief Bioinform ; 24(1)2023 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-36611257

RESUMO

Trans-splicing of a spliced leader (SL) to the 5' ends of mRNAs is used to produce mature mRNAs in several phyla of great importance to human health and the marine ecosystem. One of the consequences of the addition of SL sequences is the change or disruption of the open reading frames (ORFs) in the recipient transcripts. Given that most SL sequences have one or more of the trinucleotide NUG, including AUG in flatworms, trans-splicing of SL sequences can potentially supply a start codon to create new ORFs, which we refer to as slORFs, in the recipient mRNAs. Due to the lack of a tool to precisely detect them, slORFs were usually neglected in previous studies. In this work, we present the tool slORFfinder, which automatically links the SL sequences to the recipient mRNAs at the trans-splicing sites identified from SL-containing reads of RNA-Seq and predicts slORFs according to the distribution of ribosome-protected footprints (RPFs) on the trans-spliced transcripts. By applying this tool to the analyses of nematodes, ascidians and euglena, whose RPFs are publicly available, we find wide existence of slORFs in these taxa. Furthermore, we find that slORFs are generally translated at higher levels than the annotated ORFs in the genomes, suggesting they might have important functions. Overall, this study provides a tool, slORFfinder (https://github.com/songbo446/slORFfinder), to identify slORFs, which can enhance our understanding of ORFs in taxa with SL machinery.


Assuntos
RNA Líder para Processamento , Trans-Splicing , Humanos , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Fases de Leitura Aberta , Ecossistema , Sequência de Bases , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Splicing de RNA
3.
Open Biol ; 12(8): 220126, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-36000319

RESUMO

Spliced-leader trans-splicing (SLTS) has been described in distantly related eukaryotes and acts to mark mRNAs with a short 5' exon, giving different mRNAs identical 5' sequence-signatures. The function of these systems is obscure. Perkinsozoa encompasses a diversity of parasitic protists that infect bivalves, toxic-tide dinoflagellates, fish and frog tadpoles. Here, we report considerable sequence variation in the SLTS-system across the Perkinsozoa and find that multiple variant SLTS-systems are encoded in parallel in the ecologically important Perkinsozoa parasite Parvilucifera sinerae. These results demonstrate that the transcriptome of P. sinerae is segregated based on the addition of different spliced-leader (SL) exons. This segregation marks different gene categories, suggesting that SL-segregation relates to functional differentiation of the transcriptome. By contrast, both sets of gene categories are present in the single SL-transcript type sampled from Maranthos, implying that the SL-segregation of the Parvilucifera transcriptome is a recent evolutionary innovation. Furthermore, we show that the SLTS-system marks a subsection of the transcriptome with increased mRNA abundance and includes genes that encode the spliceosome system necessary for SLTS-function. Collectively, these data provide a picture of how the SLTS-systems can vary within a major evolutionary group and identify how additional transcriptional-complexity can be achieved through SL-segregation.


Assuntos
Parasitos , RNA Líder para Processamento , Animais , Eucariotos/genética , Parasitos/genética , Parasitos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Trans-Splicing
4.
Nucleic Acids Res ; 50(13): 7591-7607, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35736244

RESUMO

Spliced leader trans-splicing is essential for gene expression in many eukaryotes. To elucidate the molecular mechanism of this process, we characterise the molecules associated with the Caenorhabditis elegans major spliced leader snRNP (SL1 snRNP), which donates the spliced leader that replaces the 5' untranslated region of most pre-mRNAs. Using a GFP-tagged version of the SL1 snRNP protein SNA-1 created by CRISPR-mediated genome engineering, we immunoprecipitate and identify RNAs and protein components by RIP-Seq and mass spectrometry. This reveals the composition of the SL1 snRNP and identifies associations with spliceosome components PRP-8 and PRP-19. Significantly, we identify a novel, nematode-specific protein required for SL1 trans-splicing, which we designate SNA-3. SNA-3 is an essential, nuclear protein with three NADAR domains whose function is unknown. Mutation of key residues in NADAR domains inactivates the protein, indicating that domain function is required for activity. SNA-3 interacts with the CBC-ARS2 complex and other factors involved in RNA metabolism, including SUT-1 protein, through RNA or protein-mediated contacts revealed by yeast two-hybrid assays, localisation studies and immunoprecipitations. Our data are compatible with a role for SNA-3 in coordinating trans-splicing with target pre-mRNA transcription or in the processing of the Y-branch product of the trans-splicing reaction.


Assuntos
Proteínas de Caenorhabditis elegans , Caenorhabditis elegans , Proteínas Nucleares , RNA de Helmintos , RNA Líder para Processamento , Trans-Splicing , Animais , Regiões 5' não Traduzidas , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas Nucleares/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Splicing de RNA , RNA de Helmintos/genética , RNA Líder para Processamento/genética
5.
J Genet Genomics ; 49(10): 952-964, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35283340

RESUMO

Dietary restriction usually suppresses biosynthesis but activates catabolic pathways in animals. However, the short-term starvation enhances biosynthetic activities and promotes ribosomal biogenesis in adult Caenorhabditis elegans. The mechanism underlying the processes remains largely unknown. Here, we find that the short-term starvation enhances the SL1 trans-splicing of translation-related genes in adult C. elegans by transcriptome analysis. The small nuclear RNA-activating protein complex (SNAPc) promotes SL RNA production and mediates starvation-induced trans-splicing. TOFU-5, a core factor in the upstream sequence transcription complex (USTC) essential for piRNA production, is also involved in the starvation-induced trans-splicing processes. Knocking down components of the SNAPc complex and tofu-5 extends worm survival under starvation conditions. Taken together, our study highlights the importance of SL trans-splicing in the nutrition response and reveals a mechanism of the survival regulation by food deprivation via SNAPc and TOFU-5.


Assuntos
Caenorhabditis elegans , Trans-Splicing , Animais , Trans-Splicing/genética , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , RNA Nuclear Pequeno/metabolismo , RNA Interferente Pequeno
6.
J Phycol ; 58(3): 392-405, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35255163

RESUMO

Plastid primary endosymbiosis has occurred twice, once in the Archaeplastida ancestor and once in the Paulinella (Rhizaria) lineage. Both events precipitated massive evolutionary changes, including the recruitment and activation of genes that are horizontally acquired (HGT) and the redeployment of existing genes and pathways in novel contexts. Here we address the latter aspect in Paulinella micropora KR01 (hereafter, KR01) that has independently evolved spliced leader (SL) trans-splicing (SLTS) of nuclear-derived transcripts. We investigated the role of this process in gene regulation, novel gene origination, and endosymbiont integration. Our analysis shows that 20% of KR01 genes give rise to transcripts with at least one (but in some cases, multiple) sites of SL addition. This process, which often occurs at canonical cis-splicing acceptor sites (internal introns), results in shorter transcripts that may produce 5'-truncated proteins with novel functions. SL-truncated transcripts fall into four categories that may show: (i) altered protein localization, (ii) altered protein function, structure, or regulation, (iii) loss of valid alternative start codons, preventing translation, or (iv) multiple SL addition sites at the 5'-terminus. The SL RNA genes required for SLTS are putatively absent in the heterotrophic sister lineage of photosynthetic Paulinella species. Moreover, a high proportion of transcripts derived from genes of endosymbiotic gene transfer (EGT) and HGT origin contain SL sequences. We hypothesize that truncation of transcripts by SL addition may facilitate the generation and expression of novel gene variants and that SLTS may have enhanced the activation and fixation of foreign genes in the host genome of the photosynthetic lineages, playing a key role in primary endosymbiont integration.


Assuntos
Amoeba , Rhizaria , Amoeba/genética , Amoeba/metabolismo , Evolução Biológica , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Trans-Splicing
7.
mBio ; 12(6): e0260221, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34844425

RESUMO

In the parasite Trypanosoma brucei, the causative agent of human African sleeping sickness, all mRNAs are trans-spliced to generate a common 5' exon derived from the spliced leader (SL) RNA. Perturbations of protein translocation across the endoplasmic reticulum (ER) induce the spliced leader RNA silencing (SLS) pathway. SLS activation is mediated by a serine-threonine kinase, PK3, which translocates from the cytosolic face of the ER to the nucleus, where it phosphorylates the TATA-binding protein TRF4, leading to the shutoff of SL RNA transcription, followed by induction of programmed cell death. Here, we demonstrate that SLS is also induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. The PK3 kinase, which integrates SLS signals, is modified by phosphorylation on multiple sites. To determine which of the phosphorylation events activate PK3, several individual mutations or their combination were generated. These mutations failed to completely eliminate the phosphorylation or translocation of the kinase to the nucleus. The structures of PK3 kinase and its ATP binding domain were therefore modeled. A conserved phenylalanine at position 771 was proposed to interact with ATP, and the PK3F771L mutation completely eliminated phosphorylation under SLS, suggesting that the activation involves most if not all of the phosphorylation sites. The study suggests that the SLS occurs broadly in response to failures in protein sorting, folding, or modification across multiple compartments. IMPORTANCE In this study, we found that SLS is induced by depletion of the essential ER-resident chaperones BiP and calreticulin, ER oxidoreductin 1 (ERO1), and the Golgi complex-localized quiescin sulfhydryl oxidase (QSOX). Most strikingly, silencing of Rhomboid-like 1 (TIMRHOM1), involved in mitochondrial protein import, also induces SLS. We also report on the autophosphorylation of PK3 during SLS induction. This study has implications for our understanding of how trypanosomes keep the homeostasis between the ER and the mitochondria and suggests that PK3 may participate in the connection between these two organelles. The pathway, when induced, leads to the suicide of these parasites, and its induction offers a potential novel drug target against these parasites.


Assuntos
Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas de Protozoários/metabolismo , RNA de Protozoário/genética , RNA Líder para Processamento/genética , Trypanosoma brucei brucei/genética , Tripanossomíase Africana/parasitologia , Núcleo Celular/genética , Núcleo Celular/metabolismo , Retículo Endoplasmático/genética , Complexo de Golgi/genética , Humanos , Proteínas Mitocondriais/genética , Proteínas Serina-Treonina Quinases/genética , Transporte Proteico , Proteínas de Protozoários/genética , Interferência de RNA , Splicing de RNA , RNA de Protozoário/metabolismo , RNA Líder para Processamento/metabolismo , Proteína de Ligação a TATA-Box/genética , Proteína de Ligação a TATA-Box/metabolismo , Trypanosoma brucei brucei/enzimologia , Trypanosoma brucei brucei/metabolismo
8.
BMC Bioinformatics ; 22(1): 140, 2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33752599

RESUMO

BACKGROUND: Spliced leader (SL) trans-splicing replaces the 5' end of pre-mRNAs with the spliced leader, an exon derived from a specialised non-coding RNA originating from elsewhere in the genome. This process is essential for resolving polycistronic pre-mRNAs produced by eukaryotic operons into monocistronic transcripts. SL trans-splicing and operons may have independently evolved multiple times throughout Eukarya, yet our understanding of these phenomena is limited to only a few well-characterised organisms, most notably C. elegans and trypanosomes. The primary barrier to systematic discovery and characterisation of SL trans-splicing and operons is the lack of computational tools for exploiting the surge of transcriptomic and genomic resources for a wide range of eukaryotes. RESULTS: Here we present two novel pipelines that automate the discovery of SLs and the prediction of operons in eukaryotic genomes from RNA-Seq data. SLIDR assembles putative SLs from 5' read tails present after read alignment to a reference genome or transcriptome, which are then verified by interrogating corresponding SL RNA genes for sequence motifs expected in bona fide SL RNA molecules. SLOPPR identifies RNA-Seq reads that contain a given 5' SL sequence, quantifies genome-wide SL trans-splicing events and predicts operons via distinct patterns of SL trans-splicing events across adjacent genes. We tested both pipelines with organisms known to carry out SL trans-splicing and organise their genes into operons, and demonstrate that (1) SLIDR correctly detects expected SLs and often discovers novel SL variants; (2) SLOPPR correctly identifies functionally specialised SLs, correctly predicts known operons and detects plausible novel operons. CONCLUSIONS: SLIDR and SLOPPR are flexible tools that will accelerate research into the evolutionary dynamics of SL trans-splicing and operons throughout Eukarya and improve gene discovery and annotation for a wide range of eukaryotic genomes. Both pipelines are implemented in Bash and R and are built upon readily available software commonly installed on most bioinformatics servers. Biological insight can be gleaned even from sparse, low-coverage datasets, implying that an untapped wealth of information can be retrieved from existing RNA-Seq datasets as well as from novel full-isoform sequencing protocols as they become more widely available.


Assuntos
RNA Líder para Processamento , Trans-Splicing , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Eucariotos/metabolismo , Óperon , RNA Líder para Processamento/genética , RNA-Seq , Trans-Splicing/genética
9.
Nat Microbiol ; 6(3): 289-300, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33432154

RESUMO

Highly selective gene expression is a key requirement for antigenic variation in several pathogens, allowing evasion of host immune responses and maintenance of persistent infections1. African trypanosomes-parasites that cause lethal diseases in humans and livestock-employ an antigenic variation mechanism that involves monogenic antigen expression from a pool of >2,600 antigen-coding genes2. In other eukaryotes, the expression of individual genes can be enhanced by mechanisms involving the juxtaposition of otherwise distal chromosomal loci in the three-dimensional nuclear space3-5. However, trypanosomes lack classical enhancer sequences or regulated transcription initiation6,7. In this context, it has remained unclear how genome architecture contributes to monogenic transcription elongation and transcript processing. Here, we show that the single expressed antigen-coding gene displays a specific inter-chromosomal interaction with a major messenger RNA splicing locus. Chromosome conformation capture (Hi-C) revealed a dynamic reconfiguration of this inter-chromosomal interaction upon activation of another antigen. Super-resolution microscopy showed the interaction to be heritable and splicing dependent. We found a specific association of the two genomic loci with the antigen exclusion complex, whereby VSG exclusion 1 (VEX1) occupied the splicing locus and VEX2 occupied the antigen-coding locus. Following VEX2 depletion, loss of monogenic antigen expression was accompanied by increased interactions between previously silent antigen genes and the splicing locus. Our results reveal a mechanism to ensure monogenic expression, where antigen transcription and messenger RNA splicing occur in a specific nuclear compartment. These findings suggest a new means of post-transcriptional gene regulation.


Assuntos
Splicing de RNA/genética , Transcrição Gênica/genética , Trypanosoma brucei brucei/genética , Glicoproteínas Variantes de Superfície de Trypanosoma/genética , Variação Antigênica/genética , Cromossomos/genética , Cromossomos/metabolismo , Regulação da Expressão Gênica , Genoma de Protozoário/genética , Família Multigênica/genética , RNA Líder para Processamento/genética , Trypanosoma brucei brucei/imunologia
10.
RNA ; 26(12): 1891-1904, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32887788

RESUMO

Spliced leader trans-splicing is essential for the processing and translation of polycistronic RNAs generated by eukaryotic operons. In C. elegans, a specialized spliced leader, SL2, provides the 5' end for uncapped pre-mRNAs derived from polycistronic RNAs. Studies of other nematodes suggested that SL2-type trans-splicing is a relatively recent innovation, confined to Rhabditina, the clade containing C. elegans and its close relatives. Here we conduct a survey of transcriptome-wide spliced leader trans-splicing in Trichinella spiralis, a distant relative of C. elegans with a particularly diverse repertoire of 15 spliced leaders. By systematically comparing the genomic context of trans-splicing events for each spliced leader, we identified a subset of T. spiralis spliced leaders that are specifically used to process polycistronic RNAs-the first examples of SL2-type spliced leaders outside of Rhabditina. These T. spiralis spliced leader RNAs possess a perfectly conserved stem-loop motif previously shown to be essential for SL2-type trans-splicing in C. elegans We show that genes trans-spliced to these SL2-type spliced leaders are organized in operonic fashion, with short intercistronic distances. A subset of T. spiralis operons show conservation of synteny with C. elegans operons. Our work substantially revises our understanding of nematode spliced leader trans-splicing, showing that SL2 trans-splicing is a major mechanism for nematode polycistronic RNA processing, which may have evolved prior to the radiation of the Nematoda. This work has important implications for the improvement of genome annotation pipelines in nematodes and other eukaryotes with operonic gene organization.


Assuntos
Óperon , Processamento Pós-Transcricional do RNA , RNA de Helmintos/genética , RNA Mensageiro/genética , RNA Líder para Processamento/genética , Trans-Splicing/genética , Trichinella spiralis/genética , Animais , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Genoma Helmíntico , RNA de Helmintos/metabolismo , RNA Mensageiro/metabolismo , RNA Líder para Processamento/metabolismo , Trichinella spiralis/metabolismo
11.
Parasit Vectors ; 13(1): 276, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32487217

RESUMO

BACKGROUND: In eco-epidemiological studies, Leishmania detection in vectors and reservoirs is frequently accomplished by high-throughput and sensitive molecular methods that target minicircle kinetoplast DNA (kDNA). A pan-Leishmania SYBR green quantitative PCR (qPCR) assay which detects the conserved spliced-leader RNA (SL RNA) sequence was developed recently. This study assessed the SL RNA assay performance combined with a crude extraction method for the detection of Leishmania in field-collected and laboratory-reared sand flies and in tissue samples from hyraxes as reservoir hosts. METHODS: Field-collected and laboratory-infected sand fly and hyrax extracts were subjected to three different qPCR approaches to assess the suitability of the SL RNA target for Leishmania detection. Nucleic acids of experimentally infected sand flies were isolated with a crude extraction buffer with ethanol precipitation and a commercial kit and tested for downstream DNA and RNA detection. Promastigotes were isolated from culture and sand fly midguts to assess whether there was difference in SL RNA and kDNA copy numbers. Naive sand flies were spiked with a serial dilution of promastigotes to make a standard curve. RESULTS: The qPCR targeting SL RNA performed well on infected sand fly samples, despite preservation and extraction under presumed unfavorable conditions for downstream RNA detection. Nucleic acid extraction by a crude extraction buffer combined with a precipitation step was highly compatible with downstream SL RNA and kDNA detection. Copy numbers of kDNA were found to be identical in culture-derived parasites and promastigotes isolated from sand fly midguts. SL RNA levels were slightly lower in sand fly promastigotes (ΔCq 1.7). The theoretical limit of detection and quantification of the SL RNA qPCR respectively reached down to 10-3 and 10 parasite equivalents. SL RNA detection in stored hyrax samples was less efficient with some false-negative assay results, most likely due to the long-term tissue storage in absence of RNA stabilizing reagents. CONCLUSIONS: This study shows that a crude extraction method in combination with the SL RNA qPCR assay is suitable for the detection and quantification of Leishmania in sand flies. The assay is inexpensive, sensitive and pan-Leishmania specific, and accordingly an excellent assay for high-throughput screening in entomological research.


Assuntos
DNA de Cinetoplasto/genética , Reservatórios de Doenças/parasitologia , Insetos Vetores/parasitologia , Leishmania/genética , Psychodidae/parasitologia , RNA Líder para Processamento/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Animais , Feminino , Procaviídeos/parasitologia , Laboratórios , Leishmania/classificação , Leishmania/isolamento & purificação , Phlebotomus/parasitologia
12.
Artigo em Inglês | MEDLINE | ID: mdl-31015150

RESUMO

Infections with parasitic nematodes are among the most significant of the neglected tropical diseases affecting about a billion people living mainly in tropical regions with low economic activity. The most effective current strategy to control nematode infections involves large scale treatment programs with anthelmintic drugs. This strategy is at risk from the emergence of drug resistant parasites. Parasitic nematodes also affect livestock, which are treated with the same limited group of anthelmintic drugs. Livestock parasites resistant to single drugs, and even multi-drug resistant parasites, are appearing in many areas. There is therefore a pressing need for new anthelmintic drugs. Here we use the nematode Caenorhabditis elegans as a model for parasitic nematodes and demonstrate that sinefungin, a competitive inhibitor of methyltransferases, causes a delay in development and reduced fecundity, and inhibits spliced leader trans-splicing. Spliced leader trans-splicing is an essential step in gene expression that does not occur in the hosts of parasitic nematodes, and is therefore a potential target for new anthelmintic drugs. We have exploited the ability of sinefungin to inhibit spliced leader trans-splicing to adapt a green fluorescent protein based reporter gene assay that monitors spliced leader trans-splicing for high-throughput screening for new anthelmintic compounds. We have established a protocol for robust high-throughput screening, combining mechanical dispensing of living C. elegans into 384- or 1536- well plates with addition of compounds using an acoustic liquid dispenser, and the detection of the inhibition of SL trans-splicing using a microplate reader. We have tested this protocol in a first pilot screen and envisage that this assay will be a valuable tool in the search for new anthelmintic drugs.


Assuntos
Anti-Helmínticos/farmacologia , Caenorhabditis elegans/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos/métodos , RNA Líder para Processamento/genética , Trans-Splicing/efeitos dos fármacos , Animais , Caenorhabditis elegans/genética , Avaliação Pré-Clínica de Medicamentos/instrumentação , Ensaios de Triagem em Larga Escala/instrumentação , Ensaios de Triagem em Larga Escala/métodos
13.
Sci Rep ; 9(1): 1356, 2019 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-30718603

RESUMO

Spliced leader trans-splicing (SLTS) plays a part in the maturation of pre-mRNAs in select species across multiple phyla but is particularly prevalent in Nematoda. The role of spliced leaders (SL) within the cell is unclear and an accurate assessment of SL occurrence within an organism is possible only after extensive sequencing data are available, which is not currently the case for many nematode species. SL discovery is further complicated by an absence of SL sequences from high-throughput sequencing results due to incomplete sequencing of the 5'-ends of transcripts during RNA-seq library preparation, known as 5'-bias. Existing datasets and novel methodology were used to identify both conserved SLs and unique hypervariable SLs within Heterodera glycines, the soybean cyst nematode. In H. glycines, twenty-one distinct SL sequences were found on 2,532 unique H. glycines transcripts. The SL sequences identified on the H. glycines transcripts demonstrated a high level of promiscuity, meaning that some transcripts produced as many as nine different individual SL-transcript combinations. Most uniquely, transcriptome analysis revealed that H. glycines is the first nematode to demonstrate a higher SL trans-splicing rate using a species-specific SL over well-conserved Caenorhabditis elegans SL-like sequences.


Assuntos
Caenorhabditis elegans/genética , Nematoides/genética , Splicing de RNA/genética , RNA Líder para Processamento/genética , Animais , Sequência de Bases , Dosagem de Genes , Ontologia Genética , Genoma , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/química , Especificidade da Espécie , Trans-Splicing/genética , Transcriptoma/genética
14.
PLoS One ; 13(7): e0200961, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30024971

RESUMO

Paulinella micropora is a rhizarian thecate amoeba, belonging to a photosynthetic Paulinella species group that has a unique organelle termed chromatophore, whose cyanobacterial origin is distinct from that of plant and algal chloroplasts. Because acquisition of the chromatophore was quite a recent event compared with that of the chloroplast ancestor, the Paulinella species are thought to be model organisms for studying the early process of primary endosymbiosis. To obtain insight into how endosymbiotically transferred genes acquire expression competence in the host nucleus, here we analyzed the 5' end sequences of the mRNAs of P. micropora MYN1 strain with the aid of a cap-trapper cDNA library. As a result, we found that mRNAs of 27 genes, including endosymbiotically transferred genes, possessed the common 5' end sequence of 28-33 bases that were posttranscriptionally added by spliced leader (SL) trans-splicing. We also found two subtypes of SL RNA genes encoded by the P. micropora MYN1 genome. Differing from the other SL trans-splicing organisms that usually possess poly(A)-less SL RNAs, this amoeba has polyadenylated SL RNAs. In this study, we characterize the SL trans-splicing of this unique organism and discuss the putative merits of SL trans-splicing in functional gene transfer and genome evolution.


Assuntos
Cercozoários/genética , Evolução Molecular , Transferência Genética Horizontal , Fotossíntese , RNA Líder para Processamento/genética , Trans-Splicing , Biodiversidade , Cercozoários/classificação , Cercozoários/crescimento & desenvolvimento , Cromatóforos/metabolismo , DNA de Protozoário/genética , Genoma de Protozoário , Filogenia , Simbiose
15.
Sci Rep ; 8(1): 3877, 2018 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-29497070

RESUMO

Spliced leader dependent trans-splicing (SLTS) has been described as an important RNA regulatory process that occurs in different organisms, including the trematode Schistosoma mansoni. We identified more than seven thousand putative SLTS sites in the parasite, comprising genes with a wide spectrum of functional classes, which underlines the SLTS as a ubiquitous mechanism in the parasite. Also, SLTS gene expression levels span several orders of magnitude, showing that SLTS frequency is not determined by the expression level of the target gene, but by the presence of particular gene features facilitating or hindering the trans-splicing mechanism. Our in-depth investigation of SLTS events demonstrates widespread alternative trans-splicing (ATS) acceptor sites occurring in different regions along the entire gene body, highlighting another important role of SLTS generating alternative RNA isoforms in the parasite, besides the polycistron resolution. Particularly for introns where SLTS directly competes for the same acceptor substrate with cis-splicing, we identified for the first time additional and important features that might determine the type of splicing. Our study substantially extends the current knowledge of RNA processing by SLTS in S. mansoni, and provide basis for future studies on the trans-splicing mechanism in other eukaryotes.


Assuntos
RNA Líder para Processamento/genética , Schistosoma mansoni/genética , Trans-Splicing/genética , Animais , Sequência de Bases/genética , Eucariotos/genética , Íntrons/genética , Sítios de Splice de RNA/genética , Splicing de RNA/genética , RNA Mensageiro/genética , RNA Líder para Processamento/metabolismo
16.
An Acad Bras Cienc ; 90(2 suppl 1): 2311-2316, 2018 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-29044319

RESUMO

We analyzed the compositional changes and the stable base pairs in the predicted secondary structure of the 5' UTR calmodulin mRNA in T. cruzi. The three copies of calmodulin in T. cruzi genome display variable position of the trans splicing sites and give rise to several mRNA that differs slightly on 5' UTR composition in the epimastigote stage. We show that the pattern of high probability base pairs in the minimum free energy predicted secondary structures of the calmodulin 5' UTR remains unchanged despite the nucleotide composition variation. However, the 39 nt spliced leader (mini-exon, the 5' exon sequence transferred to trypanosome mRNAs by the mechanism of trans splicing) shows a variable pattern of high and low probability base pairing as consequence of the altered composition of the 5' UTR.


Assuntos
Regiões 5' não Traduzidas/genética , Calmodulina/genética , RNA Líder para Processamento/genética , Trans-Splicing/genética , Trypanosoma cruzi/genética , Animais , Pareamento de Bases , Bovinos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
17.
Nucleic Acids Res ; 46(4): 1695-1709, 2018 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-29186511

RESUMO

Trypanosomes are protistan parasites that diverged early in evolution from most eukaryotes. Their streamlined genomes are packed with arrays of tandemly linked genes that are transcribed polycistronically by RNA polymerase (pol) II. Individual mRNAs are processed from pre-mRNA by spliced leader (SL) trans splicing and polyadenylation. While there is no strong evidence that general transcription factors are needed for transcription initiation at these gene arrays, a RNA pol II transcription pre-initiation complex (PIC) is formed on promoters of SLRNA genes, which encode the small nuclear SL RNA, the SL donor in trans splicing. The factors that form the PIC are extremely divergent orthologues of the small nuclear RNA-activating complex, TBP, TFIIA, TFIIB, TFIIH, TFIIE and Mediator. Here, we functionally characterized a heterodimeric complex of unannotated, nuclear proteins that interacts with RNA pol II and is essential for PIC formation, SL RNA synthesis in vivo, SLRNA transcription in vitro, and parasite viability. These functional attributes suggest that the factor represents TFIIF although the amino acid sequences are too divergent to firmly make this conclusion. This work strongly indicates that early-diverged trypanosomes have orthologues of each and every general transcription factor, requiring them for the synthesis of SL RNA.


Assuntos
Proteínas de Protozoários/metabolismo , RNA Polimerase II/metabolismo , RNA Líder para Processamento/biossíntese , Fatores de Transcrição TFII/metabolismo , Transcrição Gênica , Trypanosoma brucei brucei/genética , Proteínas Nucleares/isolamento & purificação , Proteínas Nucleares/metabolismo , Regiões Promotoras Genéticas , Proteínas de Protozoários/química , Proteínas de Protozoários/isolamento & purificação , Proteínas de Protozoários/fisiologia , RNA Polimerase II/isolamento & purificação , RNA Líder para Processamento/genética , Fatores de Transcrição TFII/isolamento & purificação , Trypanosoma brucei brucei/enzimologia
18.
J Mol Evol ; 85(1-2): 37-45, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28744787

RESUMO

Trans-splicing is a process by which 5'- and 3'-ends of two pre-RNA molecules transcribed from different sites of the genome can be joined together to form a single RNA molecule. The spliced leader (SL) trans-splicing is mediated by the spliceosome and it allows the replacement of 5'-end of pre-mRNA by 5'(SL)-end of SL-RNA. This form of splicing has been observed in many phylogenetically unrelated eukaryotes. Either the SL trans-splicing (SLTS) originated in the last eukaryotic common ancestor (LECA) (or even earlier) and it was lost in most eukaryotic lineages, or this mechanism of RNA processing evolved several times independently in various unrelated eukaryotic taxa. The bioinformatic comparisons of SL-RNAs from various eukaryotic taxonomic groups have revealed the similarities of secondary structures of most SL-RNAs and a relative conservation of their splice sites (SSs) and Sm-binding sites (SmBSs). We propose that such structural and functional similarities of SL-RNAs are unlikely to have evolved repeatedly many times. Hence, we favor the scenario of an early evolutionary origin for the SLTS and multiple losses of SL-RNAs in various eukaryotic lineages.


Assuntos
Eucariotos/genética , Evolução Molecular , RNA Líder para Processamento/genética , Trans-Splicing , Eucariotos/metabolismo , Filogenia , Precursores de RNA/metabolismo , RNA Líder para Processamento/metabolismo
19.
Nucleic Acids Res ; 45(14): 8474-8483, 2017 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-28582530

RESUMO

Spliced leader (SL) trans-splicing is a critical element of gene expression in a number of eukaryotic groups. This process is arguably best understood in nematodes, where biochemical and molecular studies in Caenorhabditis elegans and Ascaris suum have identified key steps and factors involved. Despite this, the precise details of SL trans-splicing have yet to be elucidated. In part, this is because the systematic identification of the molecules involved has not previously been possible due to the lack of a specific phenotype associated with defects in this process. We present here a novel GFP-based reporter assay that can monitor SL1 trans-splicing in living C. elegans. Using this assay, we have identified mutants in sna-1 that are defective in SL trans-splicing, and demonstrate that reducing function of SNA-1, SNA-2 and SUT-1, proteins that associate with SL1 RNA and related SmY RNAs, impairs SL trans-splicing. We further demonstrate that the Sm proteins and pICln, SMN and Gemin5, which are involved in small nuclear ribonucleoprotein assembly, have an important role in SL trans-splicing. Taken together these results provide the first in vivo evidence for proteins involved in SL trans-splicing, and indicate that continuous replacement of SL ribonucleoproteins consumed during trans-splicing reactions is essential for effective trans-splicing.


Assuntos
Proteínas de Helminto/genética , RNA de Helmintos/genética , RNA Líder para Processamento/genética , Ribonucleoproteínas/genética , Trans-Splicing , Animais , Animais Geneticamente Modificados , Sequência de Bases , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Helminto/metabolismo , Microscopia de Fluorescência , Interferência de RNA , Precursores de RNA/genética , Precursores de RNA/metabolismo , RNA de Helmintos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Líder para Processamento/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ribonucleoproteínas/metabolismo , Ribonucleoproteínas Nucleares Pequenas/genética , Ribonucleoproteínas Nucleares Pequenas/metabolismo
20.
Genome Biol Evol ; 9(3): 468-473, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28391323

RESUMO

Spliced leader trans-splicing (SLTS) is a poorly understood mechanism that is found in a diversity of eukaryotic lineages. In SLTS, a short RNA sequence is added near the 5' ends of the transcripts of protein-coding genes by a modified spliceosomal reaction. Available data suggest that SLTS has evolved many times, and might be more likely to evolve in animals. That SLTS might be more likely to evolve in the context of the generally complex transcriptomes characteristic of animals suggests the possibility that SLTS functions in gene regulation or transcriptome diversification, however no general novel function for SLTS is known. Here, I report SLTS in a lineage of cellularly complex unicellular eukaryotes. Cryptomonads are a group of eukaryotic algae that acquired photosynthetic capacity by secondary endosymbiosis of a red alga, and that retain a reduced copy of the nucleus of the engulfed alga. I estimate that at least one-fifth of genes in the model cryptomonad Guillardia theta and its relative Hanusia phi undergo SLTS. I show that hundreds of genes in G. theta generate alternative transcripts by SLTS at alternative sites, however I find little evidence for alternative protein production by alternative SLTS splicing. Interestingly, I find no evidence for substantial operon structure in the G. theta genome, in contrast to previous findings in other lineages with SLTS. These results extend SLTS to another major group of eukaryotes, and heighten the mystery of the evolution of SLTS and its association with cellular and transcriptomic complexity.


Assuntos
Criptófitas/genética , RNA Líder para Processamento/genética , Trans-Splicing/genética , Transcriptoma/genética , Genômica , Filogenia , Simbiose/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...